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ASYMPTOTIC SOLUTION OF THE EQUATIONS OF MOTION FOR A CELTIC STONE* 

M. PASCAL 

An attempt is made to produce a theoretical explanation of the fact that transverse 
oscillations of a Celtic stone are transformed into rotation. The equations of 
motion are considered in the neighborhood of the position of stable equilibrium, 
and they contain only the linear and quadratic terms relative to initial perturba- 
tions, the latter assumed to be small. The method of averaging is used to integr- 
ate the resulting system. A concrete model the numerical values of the parameters 
of which are given in /l/, is used for illustration. 

The Celtic stone, also called a Magnus body, is a top with nonsymmetrical distribution 

of mass such, that the stability of its rotation about the vertical depends on the direction 
of rotation. It is also asserted that if such a solid is brought into an unstable rotation, 
then after a short interval the rotation will cease, the body will begin to oscillate about 

the horizontal axis, and then resume the rotation in the opposite direction. In certaincases 
this may be repeated a large number of times. 

Let the top move along a fixed horizontal plane in such a manner, that the velocity of 
slippage of the point of contact of the body with the plane is equal zero. It follows that 
a nonholonomic constraint is imposed on the motion of the top. The problem was first studied 
by Walker in /2/ and Magnus in /3,4/. The first systematic study of the stability of rota- 
tions carried out by V.V. Rumiantsev in /5/ and supplemented by the authors of /6- 8/ made 
it possible, in particular, to explain the dependence of the stability of rotations of the 
body on the direction of rotation. The phenomenon was observed by Walker /9/ who made vari- 
ous models of the Celtic stone. In another experiment, a stationary top was dealt a blow to 
its upper part. This produced an oscillation about the horizontal axis which decayed rapidly, 
and transformed itself into a rotation about the vertical, its direction depending on the 
position of the part struck. A mathematical model attempting to explain these phenomena was 
constructed in /lo/, although in the author's opinion the model could not be related to any 
real physical model in spite of possessing the properties of the Celtic stone. Another quant- 
itative study of the equations of motion for a model of the Celtic stone carried out in /l/ 
describes, with great clarity, allphenomenadiscussed in /9/. 

1. Equations of motion 161. The Celtic stone s moves without slippage on a horison- 
tal plane n (Fig-l). The position of the body S of mass m is described by the coordinates 
~0, YO on the horizontal plane of its center of inertia G relative to the fixed trihedron 
O,x,y~, (the plane x,OOy, coincides with the plane 

the orientation of the coordinate system Gx,x~~ 
x) and Euler angles @,$,cp determining 

the axes of which are directed along the 
principal central axes of inertia of the body S relative to the fixed trihedron. The 
Lagrangian of the system and conditions of rocking without slippage have the form /6/ 

L=$-{x0.*+ yd*+[~~~~sin8+e'(y~cos8-~sin8)]~}+ 

~[A(8.cosrp+~'sin8sin~)'+B(8.sin~-_'sineooscp)'+ 

c(m* + + COST)*] 

x0’ = ale’ + cw’ + a8 Ip’, Y; = file* + pzcp* + pSq. 
al = --sin $ (vl sill e + F, cos e), y1 = 5 sin cp + q cos p 
a2 = YI COs $ +- YZ COs 8 sin *,, y2 = F, cos ‘p - q sin cp 
as = (vl cos e - 5 silk e) cos q + y2 sin 9, fii = -da,ldrl 
(i = 1, 2, 3) 
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Here A,B and C are the principal moments of 1::- 
ertia of the body S, E,r), ; are the coordinates 
of the point 1 of contact between the body S and 

Fig.1 q=-a++(PE'+2QEf+R?) 

where s is the distance between the points G and 1, while P,Q,R and A are constants con- 
nected with the principal radii of curvature p, and pa of the outer surface of the body S at 
the point I, by the relations 

The angle Q determines the position of the principal axes of curvature of the point I relat- 
ive to the axes Gq. Gt,. We further assume that pr>~l, OCU< n/2, A >C. The system 
in question is conservative and represents a nonholonomlc Chaplygin system. The equations of 
motion are not given here because of their bulk (see e.g. /7/). The author of /6/ has shown 
the existence of a family of particular solutions 

8 = n/2, cp = 0, $' = 0 (1.1) 

where o is an arbitrary constant. The solutions correspond to a uniform rotation of the body 
S about the vertical axis Gz,. 

2. Stability of rotation. To study the stability of motion (l.l), we introducethree 
variables u=8- n/2, u = cp, 2' = 9' - 0. The equations of perturbed motion are written in 
the form 

Au" + K,tu + K,,v - oA*u' - 07i*v' + u = 0 (2.1) 
cv" + K,,u f K,,v + c&v' - op,u' + V = 0, Bx" + W = 0, 

~=Afma’, C=C-+-ma', K,,=d ( 
B-C+mo+)+ 

- mu+) + mg(+ -a) KIS=~ mQ (g+d), Kn=o’(B-J+ 

x,x&$, &=B--A--C+ma+ 

p,=A+C-B-ma+ 

where u, V, W are functions of u',u', u, V, r' the expansions of which contain no linearterms 
with respect to the variables given. The characteristic equation of the linear system obtain- 
ed from (2.1) has a double zero root, and other roots are given by the equation 

D (s) =ap' +,a,o.? i- a# + a&s + a, = 0 

a,, = AC, a, = A,(A - C), a, = AK,, + CKll - o’(kl’ + 

h) 

a, = Kd,, - KI, 

It has been shown in /ll/ that here we have a particular case of the Malkin theorem /12/ and 
this implies the following sufficient condit&ons of stability: 

a,4) > 0, a,> 0, --old + 0.0' -aI > 0 (2.2) 

If one of the above inequalities does not hold, then at least one of the roots .D(s) = Cl will 
have a positive or zero real part. On the other hand, s = ip(p is real) can be a root of 

the equation D(S) = 0 only if 

p=o,- o&J* + atO'- a, = 0 (2.3) 

When condition (2.3) holds, we can write D(s) in the form 

D (s) G (9 + 0") D,(s), Ox(s) G a# + ohs + a, - GJ@' 



271 

When a quantity a,o is not zero, the equation D,(s) = 0 has no purely imaginary roots. This 

leads us to conclusion that if at least one of the following inequalities holds: 

a,o c 0, a,cO, --e,w4 + a& -a *CO 

then we have instability. In order to interpret the conditions (2.2), we shall first study 
the case of equilibrium (O=O)r where we have the following biquadratic equation: 

D (6) r406' + as"s" i- af = 0 

a2 
o,mg[X(plco~‘~+pssinZa-U)+C(plsin’a+ 

p3 cos* cc - a)1 

a,* = rn”g” (PI - 4 (Pa - 4 

This yields the necessary conditions for the stability of the equilibrium 

aSo > 0, a%* - 4aoaS0 > 0, alo > 0 

and in particular the condition 

(pl -a) (pz - a) >O (2.4) 

is a necessary condition of equilibrium. 
It can be shown that /5/ in the case of equilibrium the energy integral enables us to 

construct a Liapunov function. We obtain the following sufficient conditions of equilibrium: 

pI sin* a + pB co@ u - a > 0, (pr - a) (ps - a) > 0 

Combining these conditions with (2.4) we find that if 

a C p1 4 PZ (2.5) 

then the equilibrium is stable, and unstable if a>&* In what follows, we shall assume 
that condition (2.5) holds. 

Let us now consider the general case of o +O. The conditions (2.2) are now written 

(P:! - P,) (A - C) 0 sin 2rr > 0 
(2.6) 

1x0* + znoe+ ago> 0, I$9 --$>o (2.7) 

El=@ -A)@-EF)+ 9-[(pA-Pz)W------)+ 

(Pz - @)(A - zf)cas2al$_ mQ*PIpz 

~~=~[(P~$_pz-2a)(2B-----C)+(po-Pt,(C--) + 4(&p,--aa411 

I3 = (A + C - 19) (PI -t Pz - 24 + ma (apl + up, - 2p,p,) 

The inequality (2.6) can be reduced to the condition 
on the direction in which the body rotates. 

o >O, therefore the stability depends 
If on the other hand o<O, then we have instab- 

ility. If o > 0, then we have stability, provided that o' satisfies the inequalities (2.7). 
Let the condition (2.5) hold and the quantity allo be positive. Then the second inequal- 

ity of (2.71 holds only when the following two conditions hold: 

The first inequality imposes a constraint on the form and mass distribution of the body &and 
is written in the form 

(2.8) 

The second inequality imposes a constraint ontheangular velocity of rotation of the body S. 
The velocity must exceed the critical velocity w. given by the equation 

ooaS W(h--o)WS--o) 
M+F--B)t&+-P1- 2~)-i-~Wl+op,-~ 

The above analysis implies that the stability of rotation of the body s depends on the direc- 
tion of rotation. Particular models of the Celtic stone exist, which are unstable irrespect- 
ive of the direction and angular velocity of the motion. 
dition (2.8) does not hold. 

These are the models for which con- 
In other cases when the inequality (2.8) holds, we can stillhave 

instability in either direction of motion if the initial angular velocity is not sufficiently 
great. 
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Interpretation of the first inequality of (2.7) becomes more difficult in the general 
case when the principal moments of inertia of the body S are arbitrary. However, 1~. the 
majority of the Celtic stone models under consideration we assume, that the axis of verticsl 
rotation coinciding, for some family of motions with the principal axis of inertia, is :he 
axis for which the moment of inertia is greatest. For this reason we shall asslune, from now 
on, that B > A> c, which implies that a quantity 1, will always be positive. It can be 
shown that lz is positive when mp,p?> B. This condition holds for the model discussed in 1 , 
and the first inequality of (2.7) holds for such a body at any rate of rotation. 

3. Oscillations near the position of equilibrium. (0 = X/Z, tp := $'= 0). Before 
investigating the effect which the nonlinearities have on the motion of the body S, we shall 
write the equations of perturbed motion near the position of equilibrium, with the second 
orderterms included in the explicit form. The system (2.1) now becomes 

Au" + HllU + Hl,V - x'(X,U i &v') + u, = 0 ._<.A! 

Cv" + H&l + H,,v T I' (-u,u' 1 1,v') + V, = 0 

Bz" - k,u’v’ - k,uz - k,uv - k,v2 + W, = 0 

Hll=mg($-a), Hlt=mg$, Htt=mg(G--a) 

kl=r~--A+~, k,=mg$[ -++ma+(+$)] 

k,=mg 
C 

B 
a- - 

A 
~+~(+-~)+m(~)(~)j 

k,=mg+[+ -++ma+(+)] 

Here U,, VI, W, are functions of u', v', u, v,t' the expansions of which into series begin with 
terms ofatleastthirdorderin these variables. Let the perturbations uO', VO', Ug, VO, XC.* be 
small at the initial instant, and or order e(e> 0 is a small parameter). Since the inequal- 
ities (2.5) hold, it follows that the equilibrium is stable; in the perturbed motion u., v', u, 

v, t' are infinitesimals of the order of e. 
Using the method of averaging, we shall seek an approximate solution to the system (3.1) 

in the form of an expansion asymptotic in a. Following the method given in /lo/, we carry 

out a consecutive change of variables so as to reduce the system (3.1) to its standard form. 

We write 

y = ur/;i, 2 = VlflC 

Then the 1 inearized system of equations obtained from (3.1) can be wr i tten in the form 

y” + E,y + E,z = 0, z” + ESy + E,z = 0, Bz- = 0 

&I El =- d , Et=+, 

(3.21 

In addition to the zero root, the corresponding characteristic equation has roots which can 
be found from the biquadratic equation 

D (s) = (3 + E,) (9 + E,) - ES’ = 0 

Since the equilibrium is stable, the roots D(s) = 0 are purely imaginary: fib and fid ,where 

b and d are real and positive. Let us assume that, e.g. b>d. We introduce the following 
symmetric matrix: 

whereE is a positive definite matrix with eigenvalues bt and dl. Let T(y) be a rotation 

matrix such that 

Defining the new variables Y and Z thus 
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and taking (3.2) into account, we transform the system (3.1) to the form 

~-i-b~Y=i(NIY’+N2.q+U,, z”_td3z= 
(3.3) 

s'(N,Y'+N,z') + v, 

Bx” = h, (y’* - ra) + h,Y’Z’ -t&Y9 + KIYZ + K,Z’ + w, 

The quantities Ug, I’,, W, are functions of y',z',y',z,x-, and their expansions into series 

contain terms of at least third order. The constants N, , . . . . . K4 are given by the equalit- 

ies 

Nr = I,, case y + (T -i- P,)sin y cos y -L sin’y 

Nz = XS cosa y (?c,, _t i,,) sin y cos y - PI sina y 

N, = -&sin’ y - (&, + &7,3Sin y CoS y + PI CO@ y 

N I s X1, sir? y - (& f pi) sin y cos y - XI, cm* y 

frl = k; sin y cos y, 4 = Fz co9 2y, I, = & COs’ y i- 

& sin y c0s y +&sin% y 

Rs =@,-- 3%) sin 2y + %, cos 2y, K, = &sin’ v - 

& sin y 00s y + $0os* y 

The variables Y', z', Y,Z,i are infinitesimals of the order of e, i.e. If the order of in- 
itial perturbations. Therefore, we seek a solution of (3.3) in the form 

Y = eP, z = ez, x’ I @’ 

where 9, Z and zZ~ are found from the system 

H" + bsF = eFs, 2” -j- d’Z = F& Bx” = e& 

8’1 = 2’ (NIP’ -I- NnZ’) + o (E), FS = 2’ (NJ. + NIZ’) + o (.s) 

F g = hl (P’” -r? + h8.Z’ + K$’ $ K,pZ + K&P + o (8) 

Introducing new variables AI,AP,f)l,6Z defined by the equations 

fT = A,cos (bt + 0,), z = A, 00s (dt + 03 

P’ = -Alb sin (bt + e,), z’ = -Al d sin (dt + CiJ 

we can wirte the system (3.3) in the following matrix form: 

X" = ef (X, 2, S) 

where ( T denotes transposition) 

(3.4) 

XT = i-4, 82, A,, 8s. x’i, fT = ffi, fm fr, fp, fal 

f1= - +Fl sin @t -t h), fr = - -&- F1 cos (bt + el) 

fa =--+sin(dt+Bt), f,=---&F~cos(dtf&), fax+ 

The method of averaging enables us to obtain /13/ an approximate solution to the system 
(3.3) for small e. Indeed, the function f is almost periodic in t, therefore we can define 
the function 

<f (2))=~~[fSf(+,u,O)duj 
0 

The solutions of the averaged system 

5’ = e # (x)> (3.5) 

make it possible to obtain approximate solutions of the system (3.4). 
the form 

The system (3.5) has 

Al’= + N1A,x’, 0; = 0, Al’ = -+ N,A&, $’ = 0 
(3.6) 

BZ"=+[A~2A~ + At*Asj, Al= KS +h,b2, A,PI&-~# 
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Using the relation 

%O are constants) 

Let us assume that 
the accuracy of up 

where t#,o’ is the value of v' at the initial instant. In what follows, we shall assume that 
8," = e,o = 0 , and thus obtain an approximate solution to the system of differential equaticns 

(3.4) in the form 

9” = 5’ = .oo’ we can integrate a system (3.6) to obtain ~.-1,", A:', ti,' and 

A,=A,“exp$j%, f31=81”, Az=At”e~pF, 8r=f3z0 

at the initial instant 11, = 0. The dependence of $ op. time is given wi*z 
to the quadrature by 

Bq"=B$i' + e* {AI-$ [exp(N1$)- 11 + 

Az~'~[~~P(N&) - II} 

(3.7) 

Y=e&"[exp &$-]cosb& Z=eA,” [expy: cos dt 3.8) 

where Ip is found fran (3.7). 
Equations (3.8) describe the transversal oscillations of the body S. Before analysing 

the process of motion of S, we shall represent the constants Al, At, N,, N, as functions of 
b’, df and y. The matrix relation 

E=T(.y$ dOpjlT(-Y) 

enables us to express PlA,Q/A and RJA in terms of b2,dZ and y. We obtain 

P _=a++ 
A 

(b*cos’y + d*sin* y), 

.&=&$' 
h nb 

-ddqsinycosy 

R 
T=a+ &(b Psin2y + d*cos* 9) 

By virtue of the assumption that pa> p,,O< CC< n/2, b>d, we can choose O<y( xi2 to ob- 
tain 

,j,=L sinycosy d Tbz(C-$, &=-bxNI 

N,=+ 32 = - d2NI 

The assumption that A>c implies that N,<O and N,>O- We write the equation (3.7) 
used for determining Ip, in the form 

B$' = H ($), H (rp) = B%" + b’B,* II - exp (N&)1 + dfB,'II - exp (N,$)I (3.9! 

The quantities B, = &AI and B, = eAto characterize the initial amplitudes of two forms of 

transverse oscillations of S. 
Analysis of the function H($)shows that it vanishes at two values JII and gt, of the 

coordinate $, with different signatures. For this reason the motion represents, a periodic 
oscillatory motion in 9, between two values $1 and &, for which the angular velocity +'of 
the bodyS becomes zero. 

Let the body S be stationary at the initial instant. We impart to the point of contact 

I of the body with the plane an infinitesimal displacement. The coordinates (&,cO) of the 

point I relative to the axes Gx,,Gz, are infinitesimal and of the order of e. Retaining in 
the system terms of up to the second order of smallness in e, we obtain the values of initial 

perturbations uO, and v0 for u and v, coorresponding to the displacement of the point 

ug = QE, + RC,, vg = -PE, - QL 

The initial amplitudes of two forms of transversal oscillations of the body S are obtained in 
terms of u0 and v0 using the relations 

n, = fill0 cos y T flu0 sin y, B, = -flu0 sin y -!- <~VOCO~ Y 

The relation 
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shows that if x>O, then at the beginning of the motion s' and+ are both positive, the 

transversal oscillations in Y decay, and the body rotates in thepositive direction. On the 

contrary, if x<O,$,' and 9 are negative, transversal oscillations in Z decay and the body 
rotates in the negative direction. 

4. Application to a particular model of the Celtic stone. The studycarried 
out above can be applied to the model of Celtic stone used in fl/, with the following numeric- 
al values of the paramaters a= 0.15 kg, A - 4.5.$04 kq.m2, 3 = 6.10-a kg.m2, C= 2.10-' kq.m2, 

d = 0.01 m, p, = 0.025 m, pa = 0.5 m. The angle a can vary from Oto n/2, ma 0 is arbitrary. 
The inequalities (2.5) hold and the position of equilibrium (1.1) is stable. Since the in- 
equality (2.8) and the first inequality of (2.7) both hold, the stability of the motions (1.1) 

is guaranteed for o>o,a:32rad/s. If o<% then we have instability. The analysis 

carried out in Sect.3 have shown #at the direction of rotation resulting from an infinite- 
simal displacement of the point of aantact depends on the sign of X. If the displacement of 
the p'oint of contact is caused by an impact on the upper part of the top, then it can beshown 
that the direction of the resulting rotation depends on the position of the point at whichthe 
impact is delivered. The inequality x>O expressing the condition that the body S rotates 
in the positive direction can be written in the form 

[b, - kb, + (cl - kc& clg @l[b, + kb, + (cl + be) ‘Jtg Ql 7 O 

b, = flQ cos y - fiPain y. ~,=fiRcosy--P?Qsin~ 

b, = -flQsin 7 -flP co6 y, 6% = -fiR sin y - fiQ cos y 

k = dStb= 

(4.1) 

The angle Q, determines the initial position of the point of contact1 of the body with the 
plane relative to the axes G+, and Gx~, by means of the relations 

& = pB sin @, L = po cos @, p. = (&? + &%)'i*, 0 <@ < tl 

The inequality (4.1) makes it possible to determine the values of a, for which the body S ro- 
tates in the positive ditection. The limiting values a$ and @*of the angle o, at which the 
left-hand part of (4.1) vanishes, are obtained from the equations 

J&.-h ctg 4 = E1-_kcn, O<@,<n; 
kbr + bl ctg@*=--, f=z+c1 O<@*<S 

Numerical analysis shows that U$ vanishes When OL= an91550. If O<a<*, then if the in- 
itial position of the point of contact is such that S rotates in the positive direction, then 
Q, satisfies the inequalities O<@<cD, a.nd@s<@<e+ If %< a<ni& then we have, for this 
initial position, @,< CD<@,. Numerical analysis indicates that if, e.g. we vary a from 0 
to 600 then (ol decreases, while r~, decreases over two intervals, IO, a,1 ana bo, fW. 

Fig.2 depicts, for various values of a, 
the zones, in which the point of contact 
should appear in order for the body S to ro- 
tate in the positive direction. In every 
of these cases the conclusion reached is 
that arrived at in /l/, namely that there 
exists a preferred direction of rotation. 
Indeed, the zones corresponding to rotation 
in positive direction are wider than those 
corresponding to rotations in the negative 
direction. 

The problem of change in the direction 
of rotation in case when the initial veloc- 
ity is not zero, has not been dealt with 

60* #=a0 30’ 5” here. The analysis of equations of perturb- 

Fig.2 ed motion is considerably more complex than 
that of the equilibrium case. Solution of 

this problem Would require an introduction of some simplifying assumptions concerninq the 
model of the Celtic stone used. 
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